Molecular Frame Photoelectron Angular Distributions in Polyatomic Molecules from Lab Frame Coherent Rotational Wavepacket Evolution

Molecular Frame Photoelectron Angular Distributions in Polyatomic Molecules from Lab Frame Coherent Rotational Wavepacket Evolution

Margaret Gregory, Paul Hockett, Albert Stolow, Varun Makhija

arXiv:2012.04561, Dec. 2020

The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF reconstruction, this protocol makes use of time-resolved LF measurements, in which a rotational wavepacket is prepared and probed via photoionization, followed by a numerical reconstruction routine; however, in contrast to other methodologies, the protocol developed herein does not require determination of photoionization matrix elements, and consequently takes a relatively simple numerical form (matrix transform making use of the Moore-Penrose inverse). Significantly, the simplicity allows application of the method to the successful reconstruction of MFPADs for polyatomic molecules. The scheme is demonstrated numerically for two realistic cases, N2 and C2H4. The new technique is expected to be generally applicable for a range of MF reconstruction problems involving photoionization of polyatomic molecules.


 

Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules

Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules

Molecular Physics, Article: e1836411 | Received 03 Aug 2020, Accepted 06 Oct 2020, Published online: 22 Oct 2020,
https://doi.org/10.1080/00268976.2020.1836411

Photoelectron images have been measured following the ionisation of aligned distributions of gas phase naphthalene and aniline molecules. Alignment in the adiabatic regime was achieved by interaction with a 100 ps infrared laser pulse, with ionisation achieved in a two-photon resonant scheme using a low intensity UV pulse of ∼6 ps duration. The resulting images are found to exhibit anisotropy that increases when the alignment pulse is present, with the aniline PADs peaking along the polarisation vector of the ionising light and the naphthalene PADs developing a characteristic four-lobed structure. Photoelectron angular distributions (PADs) that result from the ionisation of unaligned and fully aligned distributions of molecules are calculated using the ePolyScat ab initio suite and converted into two-dimensional photoelectron images. In the case of naphthalene excellent agreement is observed between experiment and the simulation for the fully aligned distribution, showing that the alignment step allows us to probe the molecular frame, but in the case of aniline it is clear that additional processes occur following the one-photon resonant step.

Multivariate Discrimination in Quantum Target Detection

Multivariate Discrimination in Quantum Target Detection

Update July 2020: now published as Appl. Phys. Lett. 117, 044001 (2020); https://doi.org/10.1063/5.0012429

[Submitted on 1 May 2020]

Peter Svihra, Yingwen Zhang, Paul Hockett, Steven Ferrante, Benjamin Sussman, Duncan England, Andrei Nomerotski

We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy, of a photon pair from the spontaneous parametric down-conversion source into an optimal discriminant. The discriminant performance was studied in experimental data and in Monte-Carlo modelling with clear improvement shown compared to previous techniques. As novel detectors become available, we expect this type of multivariate analysis to become increasingly important in multi-dimensional quantum optics.

arXiv:2005.00612

Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction

Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction

Yusong Liu, Spencer L. Horton, Jie Yang, J. Pedro F. Nunes, Xiaozhe Shen, Thomas J. A. Wolf, Ruaridh Forbes, Chuan Cheng, Bryan Moore, Martin Centurion, Kareem Hegazy, Renkai Li, Ming-Fu Lin, Albert Stolow, Paul Hockett, Tamás Rozgonyi, Philipp Marquetand, Xijie Wang, and Thomas Weinacht
Phys. Rev. X 10, 021016 – Published 22 April 2020

DOI: 10.1103/PhysRevX.10.021016

Pump-probe measurements aim to capture the motion of electrons and nuclei on their natural timescales (femtoseconds to attoseconds) as chemical and physical transformations take place, effectively making “molecular movies” with short light pulses. However, the quantum dynamics of interest are filtered by the coordinate-dependent matrix elements of the chosen experimental observable. Thus, it is only through a combination of experimental measurements and theoretical calculations that one can gain insight into the internal dynamics. Here, we report on a combination of structural (relativistic ultrafast electron diffraction, or UED) and spectroscopic (time-resolved photoelectron spectroscopy, or TRPES) measurements to follow the coupled electronic and nuclear dynamics involved in the internal conversion and photodissociation of the polyatomic molecule, diiodomethane (CH2I2). While UED directly probes the 3D nuclear dynamics, TRPES only serves as an indirect probe of nuclear dynamics via Franck-Condon factors, but it is sensitive to electronic energies and configurations, via Koopmans’ correlations and photoelectron angular distributions. These two measurements are interpreted with trajectory surface hopping calculations, which are capable of simulating the observables for both measurements from the same dynamics calculations. The measurements highlight the nonlocal dynamics captured by different groups of trajectories in the calculations. For the first time, both UED and TRPES are combined with theory capable of calculating the observables in both cases, yielding a direct view of the structural and nonadiabatic dynamics involved.

Multidimensional quantum illumination via direct measurement of spectro-temporal correlations

Multidimensional quantum illumination via direct measurement of spectro-temporal correlations

UPDATE May 2020 – now in PRA: Phys. Rev. A 101, 053808 – Published 4 May 2020

Sept. 2019 – New on arXiv

Quantum illumination (QI) is a quantum sensing technique, employing the strong correlation between entangled photon pairs, which is capable of significantly improving sensitivity in remote target detection under noisy background conditions when compared to classical sensing schemes. The amount of enhancement is directly proportional to the number of measurable correlated modes between the photon pairs. QI had been demonstrated using degrees of freedoms such as temporal correlations and photon number correlations, but never a combination of two or more such continuous variables. In this work, we utilize both temporal and spectral correlation of entangled photon pairs in QI. We achieved over an order of magnitude reduction to the background noise when compared to utilizing only temporal modes. This work represents an important step in realizing a practical, real-time QI system. The demonstrated technique will also be of importance in many other quantum sensing applications and quantum communications.

arXiv:1909.09664

Phys. Rev. A 101, 053808 – Published 4 May 2020

DOI: https://doi.org/10.1103/PhysRevA.101.053808

THz-bandwidth all-optical switching of heralded single photons

THz-bandwidth all-optical switching of heralded single photons

Update March 2019 – now in Optics Letters, DOI: 10.1364/OL.44.001427

June 2018 – New on arXiv.

Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single mode fiber. A switching efficiency of 97\% is achieved with a 1.7\,ps switching time, and signal-to-noise ratio of 800. Preservation of the quantum state is confirmed by measuring no significant increase in the second-order autocorrelation function g(2)(0). These values are attained with only nanojoule level pump energies that are produced by a laser oscillator with 80\,MHz repetition rate. The results highlight a simple switching device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.

Quantum-enhanced standoff detection using correlated photon pairs

Quantum-enhanced standoff detection using correlated photon pairs

We investigate the use of correlated photon pair sources for the improved quantum-level detection of a target in the presence of a noise background. Photon pairs are generated by spontaneous four-wave mixing, one photon from each pair (the herald) is measured locally while the other (the signal) is sent to illuminate the target. Following diffuse reflection from the target, the signal photons are detected by a receiver and non-classical timing correlations between the signal and herald are measured in the presence of a configurable background noise source. Quantum correlations from the photon pair source can be used to provide an enhanced signal-to-noise ratio when compared to a classical light source of the same intensity.

Phys. Rev. A 99, 023828 – Published 19 February 2019
arXiv 1811.04113  – Submitted on 9 Nov 2018

 

Quantum Canada

Quantum Canada

Feb 2019: New article in Quantum Science and Technology

Canada ranks among the world’s leading nations in quantum research, building on investments of more than $1 billion in the past decade alone. Canada’s amassed research expertise, growing private-sector impact, and government commitments to innovation and competitiveness, place the country in a strong position, as scientific advances drive quantum technology development. Here, we summarize the steps Canada has taken to build quantum research excellence and to support a growing quantum industrial base. We also discuss Canadian quantum community efforts to solidify and build the nation’s leadership, as the technology revolution unfolds.

Ben SussmanPaul CorkumAlexandre BlaisDavid Cory and Andrea Damascelli

2019 Quantum Sci. Technol. 4 020503

DOI: 10.1088/2058-9565/ab029d

Quantum Beat Photoelectron Imaging Spectroscopy of Xe in the VUV

Quantum Beat Photoelectron Imaging Spectroscopy of Xe in the VUV

UPDATE June 2018 – Now published in Phys. Rev. A 97, 063417, 2018, DOI: 10.1103/PhysRevA.97.063417

… and in Kaleidoscope.

March 2018: New on arXiv

Time-resolved pump-probe measurements of Xe, pumped at 133~nm and probed at 266~nm, are presented. The pump pulse prepared a long-lived hyperfine wavepacket, in the Xe 5p5(2P1/2)6s 2[1/2]1 manifold (E=77185 cm1=9.57 eV). The wavepacket was monitored via single-photon ionization, and photoelectron images measured. The images provide angle- and time-resolved data which, when obtained over a large time-window (900~ps), constitute a precision quantum beat spectroscopy measurement of the hyperfine state splittings. Additionally, analysis of the full photoelectron image stack provides a quantum beat imaging modality, in which the Fourier components of the photoelectron images correlated with specific beat components can be obtained. This may also permit the extraction of isotope-resolved photoelectron images in the frequency domain, in cases where nuclear spins (hence beat components) can be uniquely assigned to specific isotopes (as herein), and also provides phase information. The information content of both raw, and inverted, image stacks is investigated, suggesting the utility of the Fourier analysis methodology in cases where images cannot be inverted.

Also available on Authorea.

Full data, code & analysis notes on OSF.

Quantum Metrology with Photoelectrons (book)

Quantum Metrology with Photoelectrons (book)

Update April 2018 – the books are now available via IOP, see details at end of post.

Book for IOP Concise Physics series, due early 2018

Dr. Paul Hockett

National Research Council of Canada

Online resources

OSF project (ID: q2v3g) with interactive content and additional resources, DOI: 10.17605/OSF.IO/Q2V3G

femtolab.ca website, posts tagged “metrology-book”

femtolab.ca website, posts tagged “video”

Abstract

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron wavefunction. At the simplest level, interferences between different final angular momentum states are manifest in the energy and angle resolved photoelectron spectra: metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization. In these cases, the continuum wavefunction (and underlying scattering dynamics) can be characterised. At a more complex level, such measurements can also provide a powerful probe for other processes of interest, leading to a more general class of quantum metrology built on phase-sensitive photoelectron imaging.  Since the turn of the century, the increasing availability of photoelectron imaging experiments, along with the increasing sophistication of experimental techniques, and the availability of computational resources for analysis and numerics, has allowed for significant developments in such photoelectron metrology.

Volume I covers the core physics of photoionization, including a range of computational examples. The material is presented as both reference and tutorial, and should appeal to readers of all levels.  Volume II explores applications, and the development of quantum metrology schemes based on photoelectron measurements. The material is more technical, and will appeal more to the specialist reader.

Full text

Quantum Metrology with Photoelectrons

Volume 1
ISBN 978-1-6817-4684-5
http://iopscience.iop.org/book/978-1-6817-4684-5
Volume 2
ISBN 978-1-6817-4688-3
http://iopscience.iop.org/book/978-1-6817-4688-3