Pubs Bibbase tests

Testing for bib file locations Feb 2021
UPDATE Sept. 2021, testing embed from Github page.
NOTE: embeds not working in “preview” but OK on page proper. Some issues with height/scroll-bar, not yet resolved.







Note Github pages version currently also not rendering, not sure why – should be at https://uqogroup.github.io/UQO-group-publications/UQO_group_GScholar.html – OK after setting Jekyll theme!

Definitely not working correctly (although almost!) for GDrive hosted files. Better to use Zotero or Github for group access, probably.


Molecular Frame Photoelectron Angular Distributions in Polyatomic Molecules from Lab Frame Coherent Rotational Wavepacket Evolution

Molecular Frame Photoelectron Angular Distributions in Polyatomic Molecules from Lab Frame Coherent Rotational Wavepacket Evolution

Margaret Gregory, Paul Hockett, Albert Stolow, Varun Makhija

arXiv:2012.04561, Dec. 2020

The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF reconstruction, this protocol makes use of time-resolved LF measurements, in which a rotational wavepacket is prepared and probed via photoionization, followed by a numerical reconstruction routine; however, in contrast to other methodologies, the protocol developed herein does not require determination of photoionization matrix elements, and consequently takes a relatively simple numerical form (matrix transform making use of the Moore-Penrose inverse). Significantly, the simplicity allows application of the method to the successful reconstruction of MFPADs for polyatomic molecules. The scheme is demonstrated numerically for two realistic cases, N2 and C2H4. The new technique is expected to be generally applicable for a range of MF reconstruction problems involving photoionization of polyatomic molecules.


 

Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules

Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules

Molecular Physics, Article: e1836411 | Received 03 Aug 2020, Accepted 06 Oct 2020, Published online: 22 Oct 2020,
https://doi.org/10.1080/00268976.2020.1836411

Photoelectron images have been measured following the ionisation of aligned distributions of gas phase naphthalene and aniline molecules. Alignment in the adiabatic regime was achieved by interaction with a 100 ps infrared laser pulse, with ionisation achieved in a two-photon resonant scheme using a low intensity UV pulse of ∼6 ps duration. The resulting images are found to exhibit anisotropy that increases when the alignment pulse is present, with the aniline PADs peaking along the polarisation vector of the ionising light and the naphthalene PADs developing a characteristic four-lobed structure. Photoelectron angular distributions (PADs) that result from the ionisation of unaligned and fully aligned distributions of molecules are calculated using the ePolyScat ab initio suite and converted into two-dimensional photoelectron images. In the case of naphthalene excellent agreement is observed between experiment and the simulation for the fully aligned distribution, showing that the alignment step allows us to probe the molecular frame, but in the case of aniline it is clear that additional processes occur following the one-photon resonant step.

JCEP seminar videos online

JCEP seminar videos online

The recent JCEP* seminar series is now availble online as a series of videos. This should provide a flavour of current research at NRC and the University of Ottawa, for those interested.

* JCEP = Joint Centre for Extreme Photonics
“The Joint Centre for Extreme Photonics (JCEP) was formed in 2019 as a joint undertaking between the National Research Council (NRC) and the University of Ottawa (uOttawa). It is composed of 12 Fellows: 6 from NRC and 6 from uOttawa. Extreme photonics covers research topics ranging from single-photon sources to intense femtosecond lasers.”

Multivariate Discrimination in Quantum Target Detection

Multivariate Discrimination in Quantum Target Detection

Update July 2020: now published as Appl. Phys. Lett. 117, 044001 (2020); https://doi.org/10.1063/5.0012429

[Submitted on 1 May 2020]

Peter Svihra, Yingwen Zhang, Paul Hockett, Steven Ferrante, Benjamin Sussman, Duncan England, Andrei Nomerotski

We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy, of a photon pair from the spontaneous parametric down-conversion source into an optimal discriminant. The discriminant performance was studied in experimental data and in Monte-Carlo modelling with clear improvement shown compared to previous techniques. As novel detectors become available, we expect this type of multivariate analysis to become increasingly important in multi-dimensional quantum optics.

arXiv:2005.00612

Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction

Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction

Yusong Liu, Spencer L. Horton, Jie Yang, J. Pedro F. Nunes, Xiaozhe Shen, Thomas J. A. Wolf, Ruaridh Forbes, Chuan Cheng, Bryan Moore, Martin Centurion, Kareem Hegazy, Renkai Li, Ming-Fu Lin, Albert Stolow, Paul Hockett, Tamás Rozgonyi, Philipp Marquetand, Xijie Wang, and Thomas Weinacht
Phys. Rev. X 10, 021016 – Published 22 April 2020

DOI: 10.1103/PhysRevX.10.021016

Pump-probe measurements aim to capture the motion of electrons and nuclei on their natural timescales (femtoseconds to attoseconds) as chemical and physical transformations take place, effectively making “molecular movies” with short light pulses. However, the quantum dynamics of interest are filtered by the coordinate-dependent matrix elements of the chosen experimental observable. Thus, it is only through a combination of experimental measurements and theoretical calculations that one can gain insight into the internal dynamics. Here, we report on a combination of structural (relativistic ultrafast electron diffraction, or UED) and spectroscopic (time-resolved photoelectron spectroscopy, or TRPES) measurements to follow the coupled electronic and nuclear dynamics involved in the internal conversion and photodissociation of the polyatomic molecule, diiodomethane (CH2I2). While UED directly probes the 3D nuclear dynamics, TRPES only serves as an indirect probe of nuclear dynamics via Franck-Condon factors, but it is sensitive to electronic energies and configurations, via Koopmans’ correlations and photoelectron angular distributions. These two measurements are interpreted with trajectory surface hopping calculations, which are capable of simulating the observables for both measurements from the same dynamics calculations. The measurements highlight the nonlocal dynamics captured by different groups of trajectories in the calculations. For the first time, both UED and TRPES are combined with theory capable of calculating the observables in both cases, yielding a direct view of the structural and nonadiabatic dynamics involved.