Multidimensional quantum illumination via direct measurement of spectro-temporal correlations

Multidimensional quantum illumination via direct measurement of spectro-temporal correlations

UPDATE May 2020 – now in PRA: Phys. Rev. A 101, 053808 – Published 4 May 2020

Sept. 2019 – New on arXiv

Quantum illumination (QI) is a quantum sensing technique, employing the strong correlation between entangled photon pairs, which is capable of significantly improving sensitivity in remote target detection under noisy background conditions when compared to classical sensing schemes. The amount of enhancement is directly proportional to the number of measurable correlated modes between the photon pairs. QI had been demonstrated using degrees of freedoms such as temporal correlations and photon number correlations, but never a combination of two or more such continuous variables. In this work, we utilize both temporal and spectral correlation of entangled photon pairs in QI. We achieved over an order of magnitude reduction to the background noise when compared to utilizing only temporal modes. This work represents an important step in realizing a practical, real-time QI system. The demonstrated technique will also be of importance in many other quantum sensing applications and quantum communications.

arXiv:1909.09664

Phys. Rev. A 101, 053808 – Published 4 May 2020

DOI: https://doi.org/10.1103/PhysRevA.101.053808

Leave a Reply

Your email address will not be published. Required fields are marked *