JCEP seminar videos online

JCEP seminar videos online

The recent JCEP* seminar series is now availble online as a series of videos. This should provide a flavour of current research at NRC and the University of Ottawa, for those interested.

* JCEP = Joint Centre for Extreme Photonics
“The Joint Centre for Extreme Photonics (JCEP) was formed in 2019 as a joint undertaking between the National Research Council (NRC) and the University of Ottawa (uOttawa). It is composed of 12 Fellows: 6 from NRC and 6 from uOttawa. Extreme photonics covers research topics ranging from single-photon sources to intense femtosecond lasers.”

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) from femtolab.ca on Vimeo.

Talk originally given as a 20min presentation at PQE 2018 (Snowbird, Utah, http://pqeconference.com/pqe2018/program). The original talk was not recorded; this is an extended version using the same slides, but with rather more introductory discussion. The abstract is given below, along with links to additional material.

More details of the work discussed in the main part of the talk can be found in:
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau et. al., Physical Review Letters, 119(8), 83401 (2017).
http://doi.org/10.1103/PhysRevLett.119.083401

PQE 2018 Abstract

Bootstrapping (Ultrafast) Photoionization Dynamics
Slot: Tuesday Morning Invited Session 1
Session: Ultrafast photoionization dynamics

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron state. At the simplest level, interferences between different final angular momentum states are clearly manifest in the energy and angle resolved photoelectron spectra; metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization.

The high information content of angle-resolved interferograms, combined with geometric control over the photoionization dynamics, can provide sufficient data for reconstruction of the continuum state, in terms of the constituent partial waves and phases. This has recently been explored for a range of cases, including the use of ultrafast pump-probe schemes with a bootstrapping analysis methodology: aspects of this work will be presented.

DOI: 10.6084/m9.figshare.5645509

Refs
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry
Marceau, C., Makhija, V., Platzer, D., Naumov, A. Y., Corkum, P. B., Stolow, A., Villeneuve, D. M., Hockett, P. (2017). Physical Review Letters, 119(8), 83401. http://doi.org/10.1103/PhysRevLett.119.083401

Coherent control of photoelectron wavepacket angular interferograms.
Hockett, P., Wollenhaupt, M., & Baumert, T. (2015). Journal of Physics B: Atomic, Molecular and Optical Physics, 48(21), 214004. http://doi.org/10.1088/0953-4075/48/21/214004

Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing.
Hockett, P., Wollenhaupt, M., Lux, C., & Baumert, T. (2014). Physical Review Letters, 112(22), 223001. http://doi.org/10.1103/PhysRevLett.112.223001

Coherent imaging of an attosecond electron wave packet.
Villeneuve, D. M., Hockett, P., Vrakking, M. J. J., & Niikura, H. (2017). Science, 356(6343), 1150–1153. http://doi.org/10.1126/science.aam8393

Ultrafast atomic and molecular physics with cutting-edge light sources: New opportunities and challenges

Ultrafast atomic and molecular physics with cutting-edge light sources: New opportunities and challenges

Originally presented at ITAMP’s (Institute for Theoretical, Atomic and Molecular and Optical Physics, part of the Harvard-Smithsonian Center for Astrophysics) workshop on Ultrafast atomic and molecular physics with cutting-edge light sources: New opportunities and challenges, back in Nov. 2013.

Thanks to ITAMP for the video!

 

General phenomenology of ionization from aligned molecular ensembles (with video)

General phenomenology of ionization from aligned molecular ensembles (with video)

Paul Hockett
New J. Phys. 17 023069 2015

Single and multi-photon ionization of aligned molecular ensembles is examined, with a particular focus on the link between the molecular axis distribution and observable in various angle-integrated and angle-resolved measurements. To maintain generality the problem is treated geometrically, with the aligned ensemble cast in terms of axis distribution moments, and the response of observables in terms of couplings to these moments. Within this formalism the angular momentum coupling is treated analytically, allowing for general characteristics—independent of the details of the ionization dynamics of a specific molecule—to be determined. Limiting cases are explored in order to provide a phenomenology which should be readily applicable to a range of experimental measurements, and illustrate how observables can be sensitive to fine details of the alignment, i.e. higher-order moments of the axis distribution, which are often neglected in experimental studies. We hope that this detailed and comprehensive treatment will bridge the gap between existing theoretical and experimental works, and provide both quantitative physical insights and a useful general phenomenology for researchers working with aligned molecular ensembles.

Full article PDF

DOI: 10.1088/1367-2630/17/2/023069