Reading today…

Reading today…

Remote quantum entanglement between two micromechanical oscillators

Ralf RiedingerAndreas WallucksIgor MarinkovićClemens LöschnauerMarkus AspelmeyerSungkun Hong & Simon Gröblacher

Nature volume 556pages 473–477 (2018)

Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks1. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm2,3 and cold atomic vapours4,5, individual atoms6 and ions7,8, and defects in solid-state systems9,10,11. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

(Image above from the related Science news item, Einstein’s ‘spooky action at a distance’ spotted in objects almost big enough to see.)

Reading today…

Reading today…

Relativistic and QED Effects in the Fundamental Vibration of T2

T. Madhu Trivikram, M. Schlösser, W. Ubachs, and E. J. Salumbides

Phys. Rev. Lett. 120, 163002 – Published 16 April 2018

The hydrogen molecule has become a test ground for quantum electrodynamical calculations in molecules. Expanding beyond studies on stable hydrogenic species to the heavier radioactive tritium-bearing molecules, we report on a measurement of the fundamental T2 vibrational splitting (v=01) for J=05 rotational levels. Precision frequency metrology is performed with high-resolution coherent anti-Stokes Raman spectroscopy at an experimental uncertainty of 10–12 MHz, where sub-Doppler saturation features are exploited for the strongest transition. The achieved accuracy corresponds to a 50-fold improvement over a previous measurement, and it allows for the extraction of relativistic and QED contributions to T2 transition energies.

Reading today…

Reading today…

Building one molecule from a reservoir of two atoms

L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, K.-K. Ni

Science 12 Apr 2018: eaar7797, DOI: 10.1126/science.aar7797

Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photo-association forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

Reading today…

Reading today…

Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light

Consensus Study Report

National Academies of Sciences, Engineering, and Medicine. 2018.

The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world’s power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum.

DOI: 10.17226/24939

 

Reading today…

Reading today…

Synthetic electromagnetic knot in a three-dimensional skyrmion

Science Advances  02 Mar 2018: Vol. 4, no. 3, eaao3820

Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system.

DOI: 10.1126/sciadv.aao3820
Reading today…

Reading today…

Communication: Gas-phase structural isomer identification by Coulomb explosion of aligned molecules

The Journal of Chemical Physics 148, 091102 (2018); https://doi.org/10.1063/1.5023441
Reading today…

Reading today…

Linac Coherent Light Source: The first five years

Christoph Bostedt, Sébastien Boutet, David M. Fritz, Zhirong Huang, Hae Ja Lee, Henrik T. Lemke, Aymeric Robert, William F. Schlotter, Joshua J. Turner, and Garth J. Williams

Rev. Mod. Phys. 88, 015007 – Published 9 March 2016

A new scientific frontier opened in 2009 with the start of operations of the world’s first x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), at SLAC National Accelerator Laboratory. LCLS provides femtosecond pulses of x rays (270 eV to 11.2 keV) with very high peak brightness to access new domains of ultrafast x-ray science. This article presents the fundamental FEL physics and outlines the LCLS source characteristics along with the experimental challenges, strategies, and instrumentation that accompany this novel type of x-ray source. The main part of the article reviews the scientific achievements since the inception of LCLS in the five primary areas it serves: atomic, molecular, and optical physics; condensed matter physics; matter in extreme conditions; chemistry and soft matter, and biology.

DOI: 10.1103/RevModPhys.88.015007 

Reading today…

Reading today…

Nonlinear quantum optics mediated by Rydberg interactions

O Firstenberg, C S Adams and S Hofferberth

Published 30 June 2016© 2016 IOP Publishing Ltd
Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 49, Number 15
Special Issue on Rydberg Atomic Physics

By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.

DOI: 10.1088/0953-4075/49/15/152003

Fascinating insight into the topic, which utilises the properties of Rydberg matter to enable traditional non-linear optics to cross over to the quantum regime. From the intro:

One remarkable success of advances in ultra-cold Rydberg physics is the realization of a medium with a large optical nonlinearity at the single photon level [1–3]. Highly excited Rydberg atoms bring something new to the history of optics as they enable quantum nonlinear media where photons are strongly interacting!

Recommended.

Reading today…

Reading today…

First On-Sky Fringes with an Up-Conversion Interferometer Tested on a Telescope Array

P. Darré, R. Baudoin, J.-T. Gomes, N. J. Scott, L. Delage, L. Grossard, J. Sturmann, C. Farrington, F. Reynaud, and T. A. Ten Brummelaar
Phys. Rev. Lett. 117, 233902 – Published 29 November 2016

10.1103/PhysRevLett.117.233902

The Astronomical Light Optical Hybrid Analysis project investigates the combined use of a telescope array interferometer and nonlinear optics to propose a new generation of instruments dedicated to high-resolution imaging for infrared astronomy. The nonlinear process of optical frequency conversion transfers the astronomical light to a shorter wavelength domain. Here, we report on the first fringes obtained on the sky with the prototype operated at 1.55μm in the astronomical H band and implemented on the Center for High Angular Resolution Astronomy telescope array. This seminal result allows us to foresee a future extension to the challenging midinfrared spectral domain.

This is quite interesting as an application of photon up-conversion at low-light levels – in this case for interferometric IR telescope arrays.  The demo in the paper doesn’t show any improvement on the existing configuration (i.e. no non-linear optical step), but in principle could: once one factors in not just lossy detection in the IR, but also lossy beam transport (in the conceptually similar VLTI system it’s about 10% efficient).

The header image shows fig. 1 from the paper.

Reading today…

Reading today…

Essential entanglement for atomic and molecular physics

Malte C Tichy, Florian Mintert and Andreas Buchleitner

Published 21 September 20112011 IOP Publishing Ltd
Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 44, Number 19

Entanglement is nowadays considered as a key quantity for the understanding of correlations, transport properties and phase transitions in composite quantum systems, and thus receives interest beyond the engineered applications in the focus of quantum information science. We review recent experimental and theoretical progress in the study of quantum correlations under that wider perspective, with an emphasis on rigorous definitions of the entanglement of identical particles, and on entanglement studies in atoms and molecules.