Our Direct Ion Detection Technology Project is wrapping up in its current form, with a plan to reemerge – bigger and better – next year. See this PDF for a summary of the project to date, and plans for future work. Further details can also be found on the project webpages.
Direct Ion Detection
Happy Holidays
Our work in JCP has the (dubious?) honour of being selected as their Christmas card.
For more details of the work, see the press release (April 2017) and the original article (Feb 2017).
VIRP chamber – new detector mounting
Example of new detector mounting in our VIRP chamber, as part of our work testing ion detection technologies. The image shows a Mega-Spiraltron detector for high-pressure (up to 10^-3 mbar) charged particle detection.
Direct Ion Detection & Detector Technology Development
Our VIRP chamber (for rapid vacuum instrument prototyping), is designed to perform experiments with new detector technologies, and provide a route to optimising the methodologies and technologies. Early work has been based around novel scintillators recently developed in Oxford [1,2], and also involved trialling the PImMS camera (for 3D ion imaging) for ultrafast pump-probe experiments [3] – see our blog for further information. New project work will continue to build in these directions.
[1] A new detector for mass spectrometry: Direct detection of low energy ions using a multi-pixel photon counter
Edward S. Wilman, Sara H. Gardiner, Andrei Nomerotski, Renato Turchetta, Mark Brouard and Claire Vallance
Rev. Sci. Instrum. 83, 013304 (2012).
[2] Improved direct detection of low-energy ions using a multipixel photon counter coupled with a novel scintillator
Winter, King, Brouard & Vallance
International Journal of Mass Spectrometry, 397–398, 27–31 (2016)
[3] Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera
Ruaridh Forbes, Varun Makhija, Kévin Veyrinas, Albert Stolow, Jason W. L. Lee, Michael Burt, Mark Brouard, Claire Vallance, Iain Wilkinson, Rune Lausten, Paul Hockett
arXiv 1702.00744 (2017); The Journal of Chemical Physics 147, 013911 (2017), DOI: http://dx.doi.org/10.1063/1.4978923
Press Release: The Inner Lives of Molecules
Our latest work with the PImMS camera, femtosecond VUV pulses, and velocity-map imaging, has been picked up for a press release by AIP.
The Inner Lives of Molecules
New method takes 3-D images of molecules in action
WASHINGTON, D.C., April 4, 2017 — Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work — for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex.
“Quantum mechanics describes how all this stuff works,” said Paul Hockett of the National Research Council of Canada. “But as soon as you go beyond the two-body problem, you can’t solve the equations.” So, physicists must rely on computer simulations and experiments.
Now, he and an international team of researchers from Canada, the U.K. and Germany have developed a new experimental technique to take 3-D images of molecules in action. This tool, he said, can help scientists better understand the quantum mechanics underlying bigger and more complex molecules.
The new method, described in The Journal of Chemical Physics, from AIP Publishing, combines two technologies. The first is a camera developed at Oxford University, called the Pixel-Imaging Mass Spectrometry (PImMS) camera. The second is a femtosecond vacuum ultraviolet light source built at the NRC femtolabs in Ottawa.
Mass spectrometry is a method used to identify unknown compounds and to probe the structure of molecules. In most types of mass spectrometry, a molecule is fragmented into atoms and smaller molecules that are then separated by molecular weight. In time-of-flight mass spectrometry, for example, an electric field accelerates the fragmented molecule. The speed of those fragments depends on their mass and charge, so to weigh them, you measure how long it takes for them to hit the detector.
Most conventional imaging detectors, however, can’t discern exactly when one particular particle hits. To measure timing, researchers must use methods that effectively act as shutters, which let particles through over a short time period. Knowing when the shutter is open gives the time-of-flight information. But this method can only measure particles of the same mass, corresponding to the short time the shutter is open.
The PImMS camera, on the other hand, can measure particles of multiple masses all at once. Each pixel of the camera’s detector can time when a particle strikes it. That timing information produces a three-dimensional map of the particles’ velocities, providing a detailed 3-D image of the fragmentation pattern of the molecule.
To probe molecules, the researchers used this camera with a femtosecond vacuum ultraviolet laser. A laser pulse excites the molecule into a higher-energy state, and just as the molecule starts its quantum mechanical evolution — after a few dozen femtoseconds –another pulse is fired. The molecule absorbs a single photon, a process that causes it to fall apart. The PImMS camera then snaps a 3-D picture of the molecular debris.
By firing a laser pulse at later and later times at excited molecules, the researchers can use the PImMS camera to take snapshots of molecules at various stages while they fall into lower energy states. The result is a series of 3-D blow-by-blow images of a molecule changing states.
The researchers tested their approach on a molecule called C2F3I. Although a relatively small molecule, it fragmented into five different products in their experiments. The data and analysis software is available online as part of an open science initiative, and although the results are preliminary, Hockett said, the experiments demonstrate the power of this technique.
“It’s effectively an enabling technology to actually do these types of experiments at all,” Hockett said. It only takes a few hours to collect the kind of data that would take a few days using conventional methods, allowing for experiments with larger molecules that were previously impossible.
Then researchers can better answer questions like: How does quantum mechanics work in larger, more complex systems? How do excited molecules behave and how do they evolve?
“People have been trying to understand these things since the 1920s,” Hockett said. “It’s still a very open field of investigation, research, and debate because molecules are really complicated. We have to keep trying to understand them.”
The article, Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera, is now published in the Journal of Chemical Physics, and also available via the arXiv 1702.00744 and Authorea (original text), DOI: 10.22541/au.149030711.19068540.
The full dataset and analysis scripts are available via OSF, DOI: 10.17605/OSF.IO/RRFK3.
VIRP chamber vacuum testing
Here’s some images of the VIRP chamber in a pumping configuration, with turbo pump and gauges ready to go.
Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera
UPDATE: Dec. 2017
The figure above has made it as the JCP Christmas card!
The full JCP special issue on Velocity Map Imaging Techniques is also now officially ready, see this page, or this PDF, for all the details.
UPDATE: 4th April 2017
The article is now published in the Journal of Chemical Physics, with an accompanying press release, The Inner Lives of Molecules, from AIP.
The full dataset and analysis scripts are now also available via OSF, DOI: 10.17605/OSF.IO/RRFK3.
Feb. 2017 – new article on the arXiv:
Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera
The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x,y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2F3I photolysis are presented. The experiments utilized femtosecond UV and VUV (160.8~nm and 267~nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicates the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.
Now published in JCP:
The Journal of Chemical Physics 147, 013911 (2017);
DOI: http://dx.doi.org/10.1063/1.4978923
Also on Authorea, DOI: 10.22541/au.149030711.19068540
VIRP spectrometer v2.0 living photographs
A couple more from the Lytro lightfield camera… mouse around to move the images and change focus.
VIRP chamber spectrometer v2.0 time-lapse build footage
See VIRP chamber spectrometer v2.0 for details.
VIRP chamber spectrometer v2.0
A little more progress for our Direct Ion Detection project: the images above and below show some developments of our VIRP chamber (for rapid vacuum instrument prototyping), showing v2.0 of the charged particle spectrometer stack (following a rebuild) with some of the in vacuo wiring attached. Time-lapse build footage to follow! This configuration will allow us to perform experiments with direct ion detection, and optimise the methodologies and technologies.
Update: time-lapse build footage is now online.
For further background details, see:
A new detector for mass spectrometry: Direct detection of low energy ions using a multi-pixel photon counter
Edward S. Wilman, Sara H. Gardiner, Andrei Nomerotski, Renato Turchetta, Mark Brouard and Claire Vallance
Rev. Sci. Instrum. 83, 013304 (2012).
Improved direct detection of low-energy ions using a multipixel photon counter coupled with a novel scintillator
Winter, King, Brouard & Vallance
International Journal of Mass Spectrometry, 397–398, 27–31 (2016)