THz-bandwidth all-optical switching of heralded single photons

THz-bandwidth all-optical switching of heralded single photons

June 2018 – New on arXiv.

Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single mode fiber. A switching efficiency of 97\% is achieved with a 1.7\,ps switching time, and signal-to-noise ratio of 800. Preservation of the quantum state is confirmed by measuring no significant increase in the second-order autocorrelation function g(2)(0). These values are attained with only nanojoule level pump energies that are produced by a laser oscillator with 80\,MHz repetition rate. The results highlight a simple switching device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.

Reading today…

Reading today…

Remote quantum entanglement between two micromechanical oscillators

Ralf RiedingerAndreas WallucksIgor MarinkovićClemens LöschnauerMarkus AspelmeyerSungkun Hong & Simon Gröblacher

Nature volume 556pages 473–477 (2018)

Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks1. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm2,3 and cold atomic vapours4,5, individual atoms6 and ions7,8, and defects in solid-state systems9,10,11. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

(Image above from the related Science news item, Einstein’s ‘spooky action at a distance’ spotted in objects almost big enough to see.)

Reading today…

Reading today…

Building one molecule from a reservoir of two atoms

L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, K.-K. Ni

Science 12 Apr 2018: eaar7797, DOI: 10.1126/science.aar7797

Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photo-association forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

Quantum Metrology with Photoelectrons (book)

Quantum Metrology with Photoelectrons (book)

Update April 2018 – the books are now available via IOP, see details at end of post.

Book for IOP Concise Physics series, due early 2018

Dr. Paul Hockett

National Research Council of Canada

Online resources

OSF project (ID: q2v3g) with interactive content and additional resources, DOI: 10.17605/OSF.IO/Q2V3G

femtolab.ca website, posts tagged “metrology-book”

femtolab.ca website, posts tagged “video”

Abstract

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron wavefunction. At the simplest level, interferences between different final angular momentum states are manifest in the energy and angle resolved photoelectron spectra: metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization. In these cases, the continuum wavefunction (and underlying scattering dynamics) can be characterised. At a more complex level, such measurements can also provide a powerful probe for other processes of interest, leading to a more general class of quantum metrology built on phase-sensitive photoelectron imaging.  Since the turn of the century, the increasing availability of photoelectron imaging experiments, along with the increasing sophistication of experimental techniques, and the availability of computational resources for analysis and numerics, has allowed for significant developments in such photoelectron metrology.

Volume I covers the core physics of photoionization, including a range of computational examples. The material is presented as both reference and tutorial, and should appeal to readers of all levels.  Volume II explores applications, and the development of quantum metrology schemes based on photoelectron measurements. The material is more technical, and will appeal more to the specialist reader.

Full text

Quantum Metrology with Photoelectrons

Volume 1
ISBN 978-1-6817-4684-5
http://iopscience.iop.org/book/978-1-6817-4684-5
Volume 2
ISBN 978-1-6817-4688-3
http://iopscience.iop.org/book/978-1-6817-4688-3

 

Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed

Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed

New article in Optics Letters.

Jennifer Erskine, Duncan England, Connor Kupchak, and Benjamin Sussman

Optics Letters Vol. 43, Issue 4, pp. 907-910 (2018)

https://doi.org/10.1364/OL.43.000907

Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique’s validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5–30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.

 

Time-bin-to-polarization conversion of ultrafast photonic qubits

Time-bin-to-polarization conversion of ultrafast photonic qubits

Connor Kupchak, Philip J. Bustard, Khabat Heshami, Jennifer Erskine, Michael Spanner, Duncan G. England, and Benjamin J. Sussman
Phys. Rev. A 96, 053812 – Published 6 November 2017

The encoding of quantum information in photonic time-bin qubits is apt for long-distance quantum communication schemes. In practice, due to technical constraints such as detector response time, or the speed with which copolarized time-bins can be switched, other encodings, e.g., polarization, are often preferred for operations like state detection. Here, we present the conversion of qubits between polarization and time-bin encodings by using a method that is based on an ultrafast optical Kerr shutter and attain efficiencies of 97% and an average fidelity of 0.827±0.003 with shutter speeds near 1 ps. Our demonstration delineates an essential requirement for the development of hybrid and high-rate optical quantum networks.

Press Release: The Inner Lives of Molecules

Press Release: The Inner Lives of Molecules

Our latest work with the PImMS camera, femtosecond VUV pulses, and velocity-map imaging, has been picked up for a press release by AIP.

The Inner Lives of Molecules

New method takes 3-D images of molecules in action

WASHINGTON, D.C., April 4, 2017 — Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work — for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex.

“Quantum mechanics describes how all this stuff works,” said Paul Hockett of the National Research Council of Canada. “But as soon as you go beyond the two-body problem, you can’t solve the equations.” So, physicists must rely on computer simulations and experiments.

Now, he and an international team of researchers from Canada, the U.K. and Germany have developed a new experimental technique to take 3-D images of molecules in action. This tool, he said, can help scientists better understand the quantum mechanics underlying bigger and more complex molecules.

The new method, described in The Journal of Chemical Physics, from AIP Publishing, combines two technologies. The first is a camera developed at Oxford University, called the Pixel-Imaging Mass Spectrometry (PImMS) camera. The second is a femtosecond vacuum ultraviolet light source built at the NRC femtolabs in Ottawa.

Mass spectrometry is a method used to identify unknown compounds and to probe the structure of molecules. In most types of mass spectrometry, a molecule is fragmented into atoms and smaller molecules that are then separated by molecular weight. In time-of-flight mass spectrometry, for example, an electric field accelerates the fragmented molecule. The speed of those fragments depends on their mass and charge, so to weigh them, you measure how long it takes for them to hit the detector.

Most conventional imaging detectors, however, can’t discern exactly when one particular particle hits. To measure timing, researchers must use methods that effectively act as shutters, which let particles through over a short time period. Knowing when the shutter is open gives the time-of-flight information. But this method can only measure particles of the same mass, corresponding to the short time the shutter is open.

The PImMS camera, on the other hand, can measure particles of multiple masses all at once. Each pixel of the camera’s detector can time when a particle strikes it. That timing information produces a three-dimensional map of the particles’ velocities, providing a detailed 3-D image of the fragmentation pattern of the molecule.

To probe molecules, the researchers used this camera with a femtosecond vacuum ultraviolet laser. A laser pulse excites the molecule into a higher-energy state, and just as the molecule starts its quantum mechanical evolution — after a few dozen femtoseconds –another pulse is fired. The molecule absorbs a single photon, a process that causes it to fall apart. The PImMS camera then snaps a 3-D picture of the molecular debris.

By firing a laser pulse at later and later times at excited molecules, the researchers can use the PImMS camera to take snapshots of molecules at various stages while they fall into lower energy states. The result is a series of 3-D blow-by-blow images of a molecule changing states.

The researchers tested their approach on a molecule called C2F3I. Although a relatively small molecule, it fragmented into five different products in their experiments. The data and analysis software is available online as part of an open science initiative, and although the results are preliminary, Hockett said, the experiments demonstrate the power of this technique.

“It’s effectively an enabling technology to actually do these types of experiments at all,” Hockett said. It only takes a few hours to collect the kind of data that would take a few days using conventional methods, allowing for experiments with larger molecules that were previously impossible.

Then researchers can better answer questions like: How does quantum mechanics work in larger, more complex systems? How do excited molecules behave and how do they evolve?

“People have been trying to understand these things since the 1920s,” Hockett said. “It’s still a very open field of investigation, research, and debate because molecules are really complicated. We have to keep trying to understand them.”

Text reproduced from AIP.

The article, Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera, is now published in the Journal of Chemical Physics, and also available via the arXiv 1702.00744 and Authorea (original text), DOI: 10.22541/au.149030711.19068540.

The full dataset and analysis scripts are available via OSF, DOI: 10.17605/OSF.IO/RRFK3.

Reading today…

Reading today…

Nonlinear quantum optics mediated by Rydberg interactions

O Firstenberg, C S Adams and S Hofferberth

Published 30 June 2016© 2016 IOP Publishing Ltd
Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 49, Number 15
Special Issue on Rydberg Atomic Physics

By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.

DOI: 10.1088/0953-4075/49/15/152003

Fascinating insight into the topic, which utilises the properties of Rydberg matter to enable traditional non-linear optics to cross over to the quantum regime. From the intro:

One remarkable success of advances in ultra-cold Rydberg physics is the realization of a medium with a large optical nonlinearity at the single photon level [1–3]. Highly excited Rydberg atoms bring something new to the history of optics as they enable quantum nonlinear media where photons are strongly interacting!

Recommended.

Phonon-Mediated Nonclassical Interference in Diamond

Phonon-Mediated Nonclassical Interference in Diamond

New paper in PRL:

Phonon-Mediated Nonclassical Interference in Diamond

Duncan G. England, Kent A. G. Fisher, Jean-Philippe W. MacLean, Philip J. Bustard, Khabat Heshami, Kevin J. Resch, and Benjamin J. Sussman
Phys. Rev. Lett. 117, 073603 – Published 11 August 2016

 

Quantum interference of single photons is a fundamental aspect of many photonic quantum processing and communication protocols. Interference requires that the multiple pathways through an interferometer be temporally indistinguishable to within the coherence time of the photon. In this Letter, we use a diamond quantum memory to demonstrate interference between quantum pathways, initially temporally separated by many multiples of the optical coherence time. The quantum memory can be viewed as a light-matter beam splitter, mapping a THz-bandwidth single photon to a variable superposition of the output optical mode and stored phononic mode. Because the memory acts both as a beam splitter and as a buffer, the relevant coherence time for interference is not that of the photon, but rather that of the memory. We use this mechanism to demonstrate nonclassical single-photon and two-photon interference between quantum pathways initially separated by several picoseconds, even though the duration of the photons themselves is just 250fs.