JCEP seminar videos online

JCEP seminar videos online

The recent JCEP* seminar series is now availble online as a series of videos. This should provide a flavour of current research at NRC and the University of Ottawa, for those interested.

* JCEP = Joint Centre for Extreme Photonics
“The Joint Centre for Extreme Photonics (JCEP) was formed in 2019 as a joint undertaking between the National Research Council (NRC) and the University of Ottawa (uOttawa). It is composed of 12 Fellows: 6 from NRC and 6 from uOttawa. Extreme photonics covers research topics ranging from single-photon sources to intense femtosecond lasers.”

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) from femtolab.ca on Vimeo.

Talk originally given as a 20min presentation at PQE 2018 (Snowbird, Utah, http://pqeconference.com/pqe2018/program). The original talk was not recorded; this is an extended version using the same slides, but with rather more introductory discussion. The abstract is given below, along with links to additional material.

More details of the work discussed in the main part of the talk can be found in:
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau et. al., Physical Review Letters, 119(8), 83401 (2017).
http://doi.org/10.1103/PhysRevLett.119.083401

PQE 2018 Abstract

Bootstrapping (Ultrafast) Photoionization Dynamics
Slot: Tuesday Morning Invited Session 1
Session: Ultrafast photoionization dynamics

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron state. At the simplest level, interferences between different final angular momentum states are clearly manifest in the energy and angle resolved photoelectron spectra; metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization.

The high information content of angle-resolved interferograms, combined with geometric control over the photoionization dynamics, can provide sufficient data for reconstruction of the continuum state, in terms of the constituent partial waves and phases. This has recently been explored for a range of cases, including the use of ultrafast pump-probe schemes with a bootstrapping analysis methodology: aspects of this work will be presented.

DOI: 10.6084/m9.figshare.5645509

Refs
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry
Marceau, C., Makhija, V., Platzer, D., Naumov, A. Y., Corkum, P. B., Stolow, A., Villeneuve, D. M., Hockett, P. (2017). Physical Review Letters, 119(8), 83401. http://doi.org/10.1103/PhysRevLett.119.083401

Coherent control of photoelectron wavepacket angular interferograms.
Hockett, P., Wollenhaupt, M., & Baumert, T. (2015). Journal of Physics B: Atomic, Molecular and Optical Physics, 48(21), 214004. http://doi.org/10.1088/0953-4075/48/21/214004

Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing.
Hockett, P., Wollenhaupt, M., Lux, C., & Baumert, T. (2014). Physical Review Letters, 112(22), 223001. http://doi.org/10.1103/PhysRevLett.112.223001

Coherent imaging of an attosecond electron wave packet.
Villeneuve, D. M., Hockett, P., Vrakking, M. J. J., & Niikura, H. (2017). Science, 356(6343), 1150–1153. http://doi.org/10.1126/science.aam8393

Phase-sensitive Photoelectron Metrology (presentation at DAMOP 2017)

Phase-sensitive Photoelectron Metrology (presentation at DAMOP 2017)

Slides for Paul’s DAMOP talk are now available on figshare (DOI: 10.6084/m9.figshare.5049142).

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron state. At the simplest level, interferences between different final angular momentum states are manifest in the energy and angle resolved photoelectron spectra: metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization [1]. At a more complex level, such measurements can also provide a powerful probe for other processes of interest, for example: (a) dynamical process in time-resolved measurements, such as rotational, vibrational and electronic wavepackets, and (b) in order to understand and develop control schemes [1]. In this talk recent work in this vein will be discussed, touching on “complete” photoionization studies of atoms and molecules with shaped laser pulses [1,2] and XUV [3], metrology schemes using Angle-Resolved RABBIT, and molecular photoionization dynamics in the time-domain (Wigner delays) [4].

[1] Hockett, P. et. al. (2015). Phys. Rev. A, 92, 13412. [2] Hockett, P. et. al. (2014). Phys. Rev. Lett., 112, 223001. [3] Marceau, C. et. al. (2017). Submitted. DOI: 10.6084/m9.figshare.4480349. [4] Hockett, P. et. al. (2016). J. Phys B, 49, 95602.

Update 29th June 2017 – a video of the talk is now also available.

Phase-sensitive Photoelectron Metrology – Dr. P. Hockett, presentation at DAMOP 2017 from femtolab.ca on Vimeo.

Presentations archive: ultrafast light-matter interactions

Presentations archive: ultrafast light-matter interactions

 New presentations archive on Figshare

A perennial issue with research – it is usually impractical to publish everything.  This could be viewed as a good thing, if one assumes that the outcome is that only the cream of research is published and makes it to the wider world.  However, more often it’s absolutely not a good thing, but the result of a range of factors which impede research – for instance, there is too much material to include in formal journal articles, the work is finished but never written up formally, the work is shelved, the work becomes background for other work but remains unpublished, the work gets lost in publication or multi-author limbo… etc. etc.

These days, there’s no excuse: a range of platforms exist for sharing work at any stage of completion, from project plans to completed manuscripts, from data to code, from brief notes to full dissertations.  Figshare is one useful platform, since it provides a DOI for all public material, enabling any materials uploaded to be catalogued and cited in the usual way.

In this spirit, we’ve just uploaded some old presentations, in the area of ultrafast light-matter interactions, and this collection will continue to grow. Enjoy!

Presentations archive: ultrafast light-matter interactions.

DOI: 10.6084/m9.figshare.c.3312291