Quantum Beat Photoelectron Imaging Spectroscopy of Xe in the VUV

Quantum Beat Photoelectron Imaging Spectroscopy of Xe in the VUV

New on arXiv

Time-resolved pump-probe measurements of Xe, pumped at 133~nm and probed at 266~nm, are presented. The pump pulse prepared a long-lived hyperfine wavepacket, in the Xe 5p5(2P1/2)6s 2[1/2]1 manifold (E=77185 cm1=9.57 eV). The wavepacket was monitored via single-photon ionization, and photoelectron images measured. The images provide angle- and time-resolved data which, when obtained over a large time-window (900~ps), constitute a precision quantum beat spectroscopy measurement of the hyperfine state splittings. Additionally, analysis of the full photoelectron image stack provides a quantum beat imaging modality, in which the Fourier components of the photoelectron images correlated with specific beat components can be obtained. This may also permit the extraction of isotope-resolved photoelectron images in the frequency domain, in cases where nuclear spins (hence beat components) can be uniquely assigned to specific isotopes (as herein), and also provides phase information. The information content of both raw, and inverted, image stacks is investigated, suggesting the utility of the Fourier analysis methodology in cases where images cannot be inverted.

Also available on Authorea.

Full data, code & analysis notes on OSF.

Direct Ion Detection Summary (March 2018)

Direct Ion Detection Summary (March 2018)

Our Direct Ion Detection Technology Project is wrapping up in its current form, with a plan to reemerge – bigger and better – next year. See this PDF for a summary of the project to date, and plans for future work. Further details can also be found on the project webpages.

Heterogeneous & GPU compute

Heterogeneous & GPU compute

Heterogeneous computing, holds many opportunities for simulation and data analysis applications in the physical sciences. On the desktop, massively parallel calculations are now possible with the use of GPUs. We are currently exploring the capabilities of Nvidia’s CUDA platform on multi-GPU machines, and application to new and existing applications. This project is closely related to our AR/VR project.

The image above shows AntonJr, a dual-CPU (Xeon E5-2680), triple-GPU (GeForce 1080Ti), water-cooled machine.

Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed

Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed

New article in Optics Letters.

Jennifer Erskine, Duncan England, Connor Kupchak, and Benjamin Sussman

Optics Letters Vol. 43, Issue 4, pp. 907-910 (2018)


Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique’s validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5–30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.


Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) video

Bootstrapping (Ultrafast) Photoionization Dynamics – PQE 2018 (extended) from femtolab.ca on Vimeo.

Talk originally given as a 20min presentation at PQE 2018 (Snowbird, Utah, http://pqeconference.com/pqe2018/program). The original talk was not recorded; this is an extended version using the same slides, but with rather more introductory discussion. The abstract is given below, along with links to additional material.

More details of the work discussed in the main part of the talk can be found in:
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau et. al., Physical Review Letters, 119(8), 83401 (2017).

PQE 2018 Abstract

Bootstrapping (Ultrafast) Photoionization Dynamics
Slot: Tuesday Morning Invited Session 1
Session: Ultrafast photoionization dynamics

Photoionization is an interferometric process, in which multiple paths can contribute to the final continuum photoelectron state. At the simplest level, interferences between different final angular momentum states are clearly manifest in the energy and angle resolved photoelectron spectra; metrology schemes making use of these interferograms are thus phase-sensitive, and provide a powerful route to detailed understanding of photoionization.

The high information content of angle-resolved interferograms, combined with geometric control over the photoionization dynamics, can provide sufficient data for reconstruction of the continuum state, in terms of the constituent partial waves and phases. This has recently been explored for a range of cases, including the use of ultrafast pump-probe schemes with a bootstrapping analysis methodology: aspects of this work will be presented.

DOI: 10.6084/m9.figshare.5645509

Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry
Marceau, C., Makhija, V., Platzer, D., Naumov, A. Y., Corkum, P. B., Stolow, A., Villeneuve, D. M., Hockett, P. (2017). Physical Review Letters, 119(8), 83401. http://doi.org/10.1103/PhysRevLett.119.083401

Coherent control of photoelectron wavepacket angular interferograms.
Hockett, P., Wollenhaupt, M., & Baumert, T. (2015). Journal of Physics B: Atomic, Molecular and Optical Physics, 48(21), 214004. http://doi.org/10.1088/0953-4075/48/21/214004

Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing.
Hockett, P., Wollenhaupt, M., Lux, C., & Baumert, T. (2014). Physical Review Letters, 112(22), 223001. http://doi.org/10.1103/PhysRevLett.112.223001

Coherent imaging of an attosecond electron wave packet.
Villeneuve, D. M., Hockett, P., Vrakking, M. J. J., & Niikura, H. (2017). Science, 356(6343), 1150–1153. http://doi.org/10.1126/science.aam8393